Why do team-sport athletes drink fluid in excess when exercising in cool conditions?

Author:

Bargh Melissa J.11,King Roderick F.G.J.11,Gray Michael P.11,Jones Ben11

Affiliation:

1. Institute of Sport, Physical Activity and Leisure, G05 Carnegie Hall, Headingley Campus, Leeds Beckett University, Leeds, W. Yorkshire, United Kingdom LS6 3QS.

Abstract

This study assessed the potential physiological and perceptual drivers of fluid intake and thirst sensation during intermittent exercise. Ten male rugby players (17 ± 1 years, stature: 179.1 ± 4.2 cm, body mass (BM): 81.9 ± 8.1 kg) participated in six 6-min small-sided games, interspersed with 2 min rest, where fluid intake was ad libitum during rest periods. Pre- and postmeasurements of BM, subjective ratings (thirst, thermal comfort, thermal sensation, mouth dryness), plasma osmolality (POsm), serum sodium concentration (S[Na+]), haematocrit and haemoglobin (to calculate plasma volume change; PV) were taken. Fluid intake was measured during rest periods. BM change was –0.17 ± 0.59% and fluid intake was 0.88 ± 0.38 L. Pre- to post-POsm decreased (–3.1 ± 2.3 mOsm·kg−1; p = 0.002) and S[Na+] remained similar (–0.3 ± 0.7 mmol·L−1, p = 0.193). ΔPV was 5.84 ± 3.65%. Fluid intake displayed a relationship with pre-POsm (r = –0.640, p = 0.046), prethermal comfort (r = 0.651; p = –0.041), ΔS[Na+] (r = 0.816, p = 0.004), and ΔPV (r = 0.740; p = 0.014). ΔThirst sensation displayed a relationship with premouth dryness (r = 0.861, p = 0.006) and Δmouth dryness (r = 0.878, p = 0.004). Yet a weak positive relationship between Δthirst sensation and fluid intake was observed (r = 0.085, p = 0.841). These data observed in an ambient temperature of 13.6 ± 0.9 °C, suggest team-sport athletes drink in excess of fluid homeostasis requirements and thirst sensation in cool conditions; however, this was not influenced by thermal discomfort.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3