Noninvasive and in vivo assessment of upper and lower limb skeletal muscle oxidative metabolism activity and microvascular responses to glucose ingestion in humans

Author:

Soares Rogério Nogueira1,Colosio Alessandro L.2,Murias Juan Manuel1,Pogliaghi Silvia2

Affiliation:

1. Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.

2. Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131, Verona, VR, Italy.

Abstract

This study investigated changes in muscle oxidative metabolism and microvascular responsiveness induced by glucose ingestion in the upper and lower limbs using near-infrared spectroscopy (NIRS). Fourteen individuals (aged 27 ± 1.4 years) underwent 5 vascular occlusion tests (VOT) (pre-intervention (Pre), 30 min, 60 min, 90 min, and 120 min after glucose challenge). NIRS-derived oxygen saturation (StO2) was measured on the forearm and leg muscle at each VOT. Muscle oxidative metabolism was determined by the StO2 downslope during cuff inflation (deoxygenation slope); microvascular responsiveness was estimated by the StO2 upslope (reperfusion slope) following cuff deflation. There was a significant increase in arm (p < 0.05; 1-β = 0.860) and leg (p < 0.05; 1-β = 1.000) oxidative metabolism activity as represented by the faster deoxygenation slope at 60, 90, and 120 min (0.08 ± 0.03, 0.08 ± 0.03, 0.08 ± 0.02%·s–1, respectively) (leg) and at 90 min (0.16 ± 0.08%·s−1) (arm) observed after glucose ingestion when compared with their respective Pre values (leg = 0.06 ± 0.02; arm = 0.11 ± 0.04%·s−1). There was a significant increase in arm (p < 0.05; 1-β = 0.880) and leg (p < 0.05; 1-β = 0.983) reperfusion slope at 60 min (arm = 3.63 ± 2.1%·s−1; leg = 1.56 ± 0.6%·s−1), 90 min (arm = 3.91 ± 2.1%·s−1; leg = 1.60 ± 0.6%·s−1), and 120 min (arm = 3.91 ± 1.6%·s−1; leg = 1.54 ± 0.6%·s−1) when compared with their Pre values (arm = 2.79 ± 1.7%·s−1; leg = 1.26 ± 0.5%·s−1). Our findings showed that NIRS–VOT technique is capable of detecting postprandial changes in muscle oxidative metabolism activity and microvascular reactivity in the upper and lower limb. Novelty NIRS-VOT is a promising noninvasive clinical approach that may help in the early, limb-specific detection of impairments in glucose oxidation and microvascular function.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3