The influence of preceding activity and muscle length on voluntary and electrically evoked contractions

Author:

Debenham Mathew I.B.11,Power Geoffrey A.11

Affiliation:

1. Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.

Abstract

Muscle length and preceding activity independently influence rate of torque development (RTD) and electromechanical delay (EMD), but it is unclear whether these parameters interact to optimize RTD and EMD. The purpose of this study was to determine the influence of muscle length and preceding activity on RTD and EMD during voluntary and electrically stimulated (e-stim) contractions. Participants (n = 17, males, 24 ± 3 years) performed isometric knee extensions on a dynamometer. Explosive maximal contractions were performed at 2 knee angles (35° and 100° referenced to a 0° straight leg) without preceding activity (unloaded, UNL) and with preceding activities of 20%, 40%, 60%, and 80% of maximal voluntary contraction (MVC) torque. Absolute and normalized voluntary RTD were slowed with preceding activities ≥40% MVC for long muscle lengths and all preceding activities for short muscle lengths compared with UNL (p < 0.001). Absolute and normalized e-stim RTD were slower with preceding activities ≥40% MVC compared with UNL (p < 0.001) for both muscle lengths. Normalized RTD was faster at short muscle lengths than at long muscle lengths (p < 0.001) for e-stim (∼50%) and voluntary (∼32%) UNL contractions, but this effect was not present for absolute RTD. Muscle length did not affect EMD (p > 0.05). EMD was shorter at 80% MVC compared with UNL (∼35%; p < 0.001) for both muscle lengths during voluntary but not e-stim contractions. While RTD is limited by preceding activity at both muscle lengths, long muscle lengths require greater preceding activity to limit RTD than short muscle lengths, which indicates long muscle lengths may offer a “protective effect” for RTD against preceding activity.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3