Kolaviron attenuates diclofenac-induced nephrotoxicity in male Wistar rats

Author:

Alabi Quadri K.12,Akomolafe Rufus O.1,Adefisayo Modinat A.13,Olukiran Olaoluwa S.1,Nafiu Aliyat O.1,Fasanya Micheal K.4,Oladele Ayowole A.5

Affiliation:

1. Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.

2. Department of Haematology and Blood Transfusion, Faculty of Basic Medical Sciences, College of Medicine, Afe Babalola University, Ado Ekiti, Ekiti, State, Nigeria.

3. Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo State, Nigeria.

4. Department of Chemical Pathology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.

5. Department of Medical Laboratory Sciences, College of Medicine, Afe Babalola University, Ado Ekiti, Ekiti, State, Nigeria.

Abstract

The beneficial effects of kolaviron, a natural biflavonoid from the seeds of Garcinia kola, have been attributed to its antioxidant and anti-inflammatory activities. This study was designed to investigate the renoprotective effect of kolaviron in rat model of diclofenac (DFC)-induced acute renal failure. Thirty-five male Wistar rats were divided into 7 groups of 5 rats each as follows: a control group that received propylene glycol orally and treatment groups that received DFC, DFC recovery, DFC followed by kolaviron at 3 different doses, and kolaviron only. DFC-treated rats showed sluggishness, illness, and anorexia. Their urine contained appreciable protein, glucose, and ketone bodies. Histopathological examination of their kidneys revealed profound acute tubular necrosis. DFC treatment significantly increased levels of plasma creatinine, urea, sodium, chloride, potassium ions, and increased renal tissue activities of superoxide dismutase, catalase, levels of malondialdehyde, and hydrogen peroxide. Fractional excretion of sodium and potassium and renal tissue levels of reduced glutathione and prostaglandin E2 (PGE2) decreased significantly in DFC-treated groups. However, kolaviron administration significantly reduced the toxic effect of DFC on PGE2 release; plasma levels of creatinine, urea, glucose, and electrolytes; and significantly attenuated renal tubular and oxidative damages. Furthermore, the effects of DFC administration on food consumption, water intake, urine output and urine protein, glucose, ketone bodies, and electrolytes were significantly attenuated in animals treated with kolaviron. The results suggested that kolaviron ameliorated DFC-induced kidney injury in Wistar rats by decreasing renal oxidative damage and restoration of renal PGE2 release back to the basal levels.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3