Electromyostimulation with blood flow restriction enhances activation of mTOR and MAPK signaling pathways in rat gastrocnemius muscles

Author:

Natsume Toshiharu1,Yoshihara Toshinori2,Naito Hisashi2

Affiliation:

1. Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan.

2. Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan.

Abstract

Neuromuscular electrical stimulation (NMES) combined with blood flow restriction (BFR) induces muscle hypertrophy. However, cellular mechanisms underlying the muscle hypertrophy induced by NMES combined with BFR remain unclear. We tested the hypothesis that NMES combined with BFR would enhance the mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathways. Age-matched male Wistar rats (6 months old, n = 7 per group) were assigned randomly to control, BFR alone (BFR), NMES alone (NMES), and NMES combined with BFR (NMES/BFR) groups. NMES induced 25 isometric contractions lasting 8 s with 4-s resting periods between contractions in the gastrocnemius muscle. Four sets in total were performed, with 1-min intervals between sets. A latex cuff was placed on the proximal portion of the hind limb and BFR at 200 mm Hg was conducted in 4 sets (each set 5 min) with 1-min rest intervals between sets. Venous blood was collected from the lateral tail vein to determine pH, H+ concentration, and lactate concentration before and immediately after the treatments. Expression levels of proteins related to muscle hypertrophy were determined by Western blot analysis. The application of NMES/BFR promoted muscle fatigue more than NMES alone. NMES/BFR induced greater changes in accumulation of metabolites and increase in gastrocnemius muscle weight. The phosphorylation of mTOR and MAPK signaling-related proteins was also enhanced following NMES/BFR, compared with other conditions. Thus, NMES enhanced the activation of mTOR and MAPK signaling pathways when combined with BFR.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3