Self-pacing increases critical power and improves performance during severe-intensity exercise

Author:

Black Matthew I.11,Jones Andrew M.11,Bailey Stephen J.11,Vanhatalo Anni11

Affiliation:

1. Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK.

Abstract

The parameters of the power-duration relationship for severe-intensity exercise (i.e., the critical power (CP) and the curvature constant (W′)) are related to the kinetics of pulmonary O2 uptake, which may be altered by pacing strategy. We tested the hypothesis that the CP would be higher when derived from a series of self-paced time-trials (TT) than when derived from the conventional series of constant work-rate (CWR) exercise tests. Ten male subjects (age, 21.5 ± 1.9 years; mass, 75.2 ± 11.5 kg) completed 3–4 CWR and 3–4 TT prediction trial protocols on a cycle ergometer for the determination of the CP and W′. The CP derived from the TT protocol (265 ± 44 W) was greater (P < 0.05) than the CP derived from the CWR protocol (250 ± 47 W), while the W′ was not different between protocols (TT: 18.1 ± 5.7 kJ, CWR: 20.6 ± 7.4 kJ, P > 0.05). The mean response time of pulmonary O2 uptake was shorter during the TTs than the CWR trials (TT: 34 ± 16, CWR: 39 ± 19 s, P < 0.05). The CP was correlated with the total O2 consumed in the first 60 s across both protocols (r = 0.88, P < 0.05, n = 20). These results suggest that in comparison with the conventional CWR exercise protocol, a self-selected pacing strategy enhances CP and improves severe-intensity exercise performance. The greater CP during TT compared with CWR exercise has important implications for performance prediction, suggesting that TT completion times may be overestimated by CP and W′ parameters derived from CWR protocols.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Determination of Critical Speed and Critical Power in Recreational Runners;International Journal of Sports Physiology and Performance;2023-12-01

2. Modelling inter-individual variability in acute and adaptive responses to interval training: insights into exercise intensity normalisation;European Journal of Applied Physiology;2023-11-15

3. Running Critical Power and W´: Influence of the Environment, Timing and Time Trial Order;International Journal of Sports Medicine;2023-10-30

4. Determining critical power and W′ in running: Accuracy of different two-point models using the power metric;Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology;2023-09-27

5. The success of critical velocity protocol on predicting 10000 meters running performance;Physical Education of Students;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3