Minimal alteration in muscle lipid genes following stabilized weight loss

Author:

Coker Robert H.12,Robinette Leizleigh2,Kern Philip A.3

Affiliation:

1. Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK 99775, USA.

2. Center for Translational Research in Aging and Longevity, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

3. Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA.

Abstract

Variations in skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), carntine palmitoyltransferase-1 (CPT-1), perilipin protein 2 (PLIN2), and adipose tissue triglyceride lipase (ATGL), and comparative gene identification-58 (CGI-58) have been described as playing important roles in the metabolic regulation of lipid oxidation, and may influence intramyocellular lipid (IMCL) and muscle lipid droplet size (LDS). While acute changes in caloric balance and/or aerobic capacity may affect lipid metabolism, the influence of sustained weight loss derived from caloric restriction with weight loss (CWL) compared with exercise training with weight loss (EWL) on the abovementioned parameters has not been fully elucidated. Using a combination of metabolic feeding and/or supervised exercise training, we evaluated the influence of stabilized weight loss elicited by CWL compared with EWL without the confounding influence of acute alterations in caloric balance on molecular markers of mitochondrial metabolism and lipid droplet size in middle-aged overweight individuals with impaired glucose tolerance. There were no significant changes in PGC-1α, CPT-1, PLIN2, ATGL and, CGI-58 messenger RNA (mRNA) in CWL and EWL. While there were no changes in ATGL mRNA in CWL, there was a strong trend (P = 0.05) for the ΔATGL mRNA in EWL with stabilized weight loss. There were no significant changes in IMCL or LDS within skeletal muscle in CWL or EWL, respectively. In conclusion, under the conditions of chronic caloric balance following dietary or exercise-based interventions, mediators of mitochondrial function, IMCL and LDS, were largely unaffected. Future studies should focus on intervention-based changes in protein expression and/or phosphorylation and the relationship to physiological endpoints.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3