Caffeine ingestion impairs insulin sensitivity in a dose-dependent manner in both men and women

Author:

Beaudoin Marie-Soleil1,Allen Brian2,Mazzetti Gillian1,Sullivan Peter J.1,Graham Terry E.1

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

2. Department of Mathematics and Statistics, University of Guelph, ON N1G 2W1, Canada.

Abstract

The effects of alkaloid caffeine on insulin sensitivity have been investigated primarily in men, and with a single caffeine dose most commonly of 5–6 mg·kg−1 of body weight (BW). It is unknown if the effects of caffeine on glucose homeostasis are sex-specific and (or) dose-dependent. This study examined whether caffeine ingestion would disrupt glucose homeostasis in a dose-dependent or threshold manner. It also examined whether sex-specific responses to caffeine exist. It was hypothesized that women would have an exaggerated response to caffeine, and that caffeine would only impair glucose metabolism once a threshold was reached. Twenty-four healthy volunteers (12 males, 12 females) participated in 4 trials, in a crossover, randomized, and double-blind fashion. They ingested caffeine (1, 3, or 5 mg·kg−1 of BW) or placebo followed, 1 h later, by a 2-h oral glucose tolerance test. Glucose, insulin, C-peptide area under the curve (AUC), and insulin sensitivity index data were fitted to a segmented linear model to determine dose–responses. There were no differences between sexes for any endpoints. Regression slopes were significantly different from zero (p < 0.05) for glucose, insulin, and C-peptide AUCs, with thresholds being no different from zero. Increasing caffeine consumption by 1 mg·kg−1 of BW increased insulin and C-peptide AUCs by 5.8% and 8.7%, respectively. Despite this exaggerated insulin response, glucose AUC increased by 11.2 mmol per 120 min·L–1 for each mg·kg−1 BW consumed. These results showed that caffeine ingestion disrupted insulin sensitivity in a dose-dependent fashion beginning at very low doses (0–1 mg·kg−1 BW) in both healthy men and women.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3