Physiological aspects of the subcellular localization of glycogen in skeletal muscle

Author:

Nielsen Joachim1,Ørtenblad Niels1

Affiliation:

1. SDU Muscle Research Cluster (SMRC), Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 83125 Östersund, Sweden.

Abstract

Glucose is stored in skeletal muscle fibers as glycogen, a branched-chain polymer observed in electron microscopy images as roughly spherical particles (known as β-particles of 10–45 nm in diameter), which are distributed in distinct localizations within the myofibers and are physically associated with metabolic and scaffolding proteins. Although the subcellular localization of glycogen has been recognized for more than 40 years, the physiological role of the distinct localizations has received sparse attention. Recently, however, studies involving stereological, unbiased, quantitative methods have investigated the role and regulation of these distinct deposits of glycogen. In this report, we review the available literature regarding the subcellular localization of glycogen in skeletal muscle as investigated by electron microscopy studies and put this into perspective in terms of the architectural, topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility and fatigability. Based on all these data, the available literature strongly indicates that the subcellular localization of glycogen has to be taken into consideration to fully understand and appreciate the role and regulation of glycogen metabolism and signaling in skeletal muscle. A full understanding of these phenomena may prove vital in elucidating the mechanisms that integrate basic cellular events with changing glycogen content.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Reference74 articles.

1. Skeletal Muscle Fatigue: Cellular Mechanisms

2. Aon, M.A., Cortassa, S., and O'Rourke, B. 2007. On the network properties of mitochondria.InMolecular system bioenergetics.Edited byV. Saks. Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, Germany. pp. 111–136.

3. Muscle Glycogen Synthesis after Exercise : an Enhancing Factor localized to the Muscle Cells in Man

4. Diet, Muscle Glycogen and Physical Performance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3