Affiliation:
1. Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, 231 Turner Center, University, MS 38677, USA.
Abstract
Blood flow restriction (BFR) in combination with exercise has been used to increase muscle size and strength using relatively low loads (20%–30% 1-repetition maximum (1RM)). In research, the range of applied pressures based on a percentage of arterial occlusion pressure (AOP), is wide. The purpose of the study is to measure the blood flow response before exercise, following each set of exercise, and postexercise to low-load elbow flexion combined with no restriction (NOBFR), 40% of AOP (40BFR), and 80% of AOP (80BFR). One hundred and fifty-two participants volunteered; 140 completed the protocol (women = 75, men = 65). Participants were counter-balanced into 1 of 3 conditions. Following AOP and 1RM measurement, ultrasound was used to measure standing blood flow at rest in the right brachial artery. Participants performed 4 sets of elbow flexion at 30% 1RM. Blood flow was measured between sets and at 1 and 5 min postexercise. Blood flow decreased following inflation, with no difference between conditions (p < 0.001). Men had greater blood flow than women in all conditions at all time points (p < 0.001). Resting hyperemia decreased with pressure (NOBFR > 40BFR > 80BFR, p < 0.001). Blood flow increased from rest to after set 1 regardless of condition. Following cuff deflation, blood flow increased in both the 80BFR and 40BFR conditions. The reduction in hyperemia during BFR is pressure-dependent. Contrary to previous investigations, blood flow was increased above baseline following exercise.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献