Critical skating intensity on a slide board: physiological and neuromuscular responses and correlation with performance on ice

Author:

Piucco Tatiane1,Phillips Julia1,Finnie Jordan1,Rados Andrew1,de Lucas Ricardo Dantas2

Affiliation:

1. Health and Physical Education Department, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB T3E 6K6, Canada.

2. Sports Center, Federal University of Santa Catarina, UFSC Campus Trindade, Av. César Seara, Florianópolis, SC 88040-900, Brazil.

Abstract

The aim of this study was to assess the physiological and neuromuscular responses at critical skating intensity on a slide board and to investigate the correlations between critical cadence (CC) and skating performances on ice. Thirteen well-trained speed skaters (age,19.8 ± 4.2 years; weight, 69.6 ± 9.06 kg) performed a maximal skating incremental test (IT) on a slide board. CC was determined from 3 to 4 trials to exhaustion lasting from 3.1 ± 0.7 to 13.9 ± 3.1 min, using linear and hyperbolic mathematical fittings. A time to exhaustion test at CC (TTE-CC) was performed. CC values (55.3 ± 5.0 ppm) were significantly higher than cadence at the respiratory compensation point (RCP) (53.5 ± 4.0 ppm). Mean duration of TTE-CC was 22.9 ± 4.8 min. Peak values of oxygen uptake, heart rate (HR), ventilation, respiratory exchange ratio (RER), and ratings of perceived exertion (RPE) during TTE-CC were significantly lower (p < 0.05) than the peak values reached during the IT. Oxygen uptake, HR, ventilation, RER, and RPE significantly increased from 25% to 100% of TTE-CC. Muscle activity (integrated electromyography) significantly increased after 75% of TTE-CC for vastus lateralis and gluteus maximus muscles. Oxygen uptake at CC was better associated to skating performance on 500, 1000, 1500, and 5000 m than peak oxygen uptake at IT and oxygen uptake at RCP. Physiological responses indicate that critical skating intensity on slide board occurred within the heavy exercise domain where oxygen uptake increases but does not reach its maximum. Critical cadence could be used as a better indicator of performance and training prescription for long track speed skating distances.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3