Author:
Fujii Toshihiro,Suzuki Tatsuo,Hachimori Akira,Fujii Michiyo,Kondo Yoshiyuki,Ohki Kosuke
Abstract
The interaction between polymerized tubulin from porcine brain and myosin from rabbit skeletal muscle was examined. The addition of myosin to the solution of tubulin polymerized by taxol resulted in a remarkable increase in turbidity within a few minutes at 37 °C, and a dense and stable precipitate was formed. The maximal molar ratio of tubulin bound to myosin was calculated to be about 4, while the value was about 2 when 6S tubulin was used. Both podophyllotoxin and colchicine suppressed the taxol-dependent increase of the binding of tubulin to myosin, but only when they were preincubated with tubulin prior to addition of taxol. 6S tubulin inhibited with aetin-activated Mg2+-ATPase activity of myosin, and polymerized tubulin inhibited the Mg-ATPase more than 6S tubulin. Dense precipitates of tubulin and myosin were observed by thin-section electron microscopy. Microtubules were observed to be entangled in myosin filaments and single microtubules were occasionally surrounded by five myosin filaments in a cross section, similar to actin–myosin arrays in muscle. After incubation of tubulin with myosin, taxol was able to induce tubulin polymerization in the same way as it polymerized microtubules in the absence of myosin.
Publisher
Canadian Science Publishing
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献