Improved understanding of geogrid response to pullout loading: insights from three-dimensional finite-element analysis

Author:

Hussein Mahmoud G.11,Meguid Mohamed A.11

Affiliation:

1. Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, Quebec, Canada.

Abstract

Soil reinforcement has rapidly become one of the most common soil improvement techniques used in geotechnical engineering. Understanding the behavior of a geogrid under pullout loading is essential for the analysis and design of reinforced soil systems. The overall behavior of reinforced soils is generally dependent on the properties of the geogrid material, the backfill soil, and the interface condition. Modeling the three-dimensional aspects of soil–geogrid interaction under pullout loading condition is numerically challenging and requires special consideration of the different modes of resistance that contribute to the pullout capacity of the geogrid reinforcement. This study describes the results of a three-dimensional finite-element analysis that has been developed to investigate the behavior of a biaxial geogrid embedded in granular backfill material and subjected to pullout loading. The modeling approach considers the noncontinuous nature of the geogrid geometry and the elastoplastic response of the geogrid material. Model validation is performed by simulating laboratory-size pullout test and comparing the experimental data with the analytical as well as numerically calculated results. The detailed behavior of the geogrid and the surrounding backfill is investigated using the proposed numerical approach. Conclusions are made to highlight the suitability of this technique for analyzing similar soil–structure interaction problems.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference51 articles.

1. AASHTO. 2012. LRFD bridge design specifications. 6th ed. American Association of State Highway and Transportation Officials, Washington, D.C., USA.

2. Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test

3. Experimental and numerical analysis of large scale pull out tests conducted on clays reinforced with geogrids encapsulated with coarse material

4. Influence of longitudinal and transverse members on geogrid pullout behavior during deformation

5. ASTM. 2013. Standard test method for measuring geosynthetic pullout resistance in soil. ASTM standard D6706-01. ASTM International. West Conshohocken, PA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3