Investigating challenges of in situ delivery of microbial-induced calcium carbonate precipitation (MICP) in fine-grain sands and silty sand

Author:

Zamani Atefeh11,Montoya Brina M.11,Gabr Mohammed A.11

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695-7908, USA.

Abstract

Microbial-induced calcium carbonate precipitation (MICP) is a sustainable soil improvement method with the potential for improving the engineering properties of sand and silty soils and therefore their resistance to liquefaction-inducing events. Work presented herein experimentally investigates the changes in hydraulic conductivity of fine sands and silty sands as a result of MICP treatment. In addition, numerical modeling is conducted to assess the changes in allowable injection rate and radius of influence for the delivery of the MICP process at the field scale. The hydraulic conductivity of Nevada sand and silty sand with 15% fines content decreased through MICP application with the trend of reduction being similar for both soils. Numerical modeling results show that with the progress of the MICP process, injection rates can be increased for Nevada sand, but remain unchanged for Nevada sand with 15% silt content (after MICP treatment up to a shear wave velocity about 400 m/s.) The presence of fines by itself leads to generation of higher levels of pore-water pressure during the injection process, which necessitates higher strength improvement to prevent development of excessive plastic strains. Therefore, improvement in shear strength and stiffness relative to the magnitude of the hydraulic conductivity level and its rate of change during the MICP process is a key parameter in determining the radius of treatment.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3