Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response

Author:

Lo M.K.11,Leung Y.F.11

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Abstract

This paper introduces an approach that utilizes field measurements to update the parameters characterizing spatial variability of soil properties and model bias, leading to refined predictions for subsequent construction stages. It incorporates random field simulations and a surrogate modeling technique into the Bayesian updating framework, while the spatial and stage-dependent correlations of model bias can also be considered. The approach is illustrated using two cases of multi-stage braced excavations, one being a hypothetical scenario and the other from a case study in Hong Kong. Making use of all the deflection measurements along an inclinometer, the principal components of the random field and model bias factors can be updated efficiently as the instrumentation data become available. These various sources of uncertainty do not only cause discrepancies between prior predictions and actual performance, but can also lead to response mechanisms that cannot be captured by deterministic approaches, such as distortion of the wall along the longitudinal direction of the excavation. The proposed approach addresses these issues in an efficient manner, producing prediction intervals that reasonably encapsulate the response uncertainty as shown in the two cases. The capability to continuously refine the response estimates and prediction intervals can help support the decision-making process as the construction progresses.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference43 articles.

1. Probabilistic Analysis of Strip Footings Resting on Spatially Varying Soils and Subjected to Vertical or Inclined Loads

2. Anderson, T.W. 1984. An introduction to multivariate statistical analysis. John Wiley & Sons, Inc.

3. Baecher, G.B., and Christian, J.T. 2003. Reliability and statistics in geotechnical engineering. Wiley.

4. Probabilistic analysis of the inverse analysis of an excavation problem

5. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3