Affiliation:
1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
Abstract
To investigate the influence of stress Lode angle on frozen soil, a series of directional shear tests was conducted on artificial frozen clay at three temperatures (–6, –10, and –15 °C) and five stress Lode angles (θσ = –30°, –16.1°, 0°, 16.1°, and 30°) using a hollow cylindrical apparatus. An elliptical function was proposed according to the strength envelope evaluation with the mean principal stress (p) in the p–q plane. In addition, generalized nonlinear strength theory (GNST) was introduced in the π plane to describe the evolution of the strength envelope with increasing mean principal stress. Then a strength criterion for frozen clay in three-dimensional principal stress space was proposed by combining strength functions in the p–q and π planes. The temperature effect was also introduced into the strength criterion. The proposed strength criterion can predict the multi-axial strength characteristics of frozen clay and reveal the influence of the stress Lode angle.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献