New method to calculate apparent phase velocity of open-ended pipe pile

Author:

Wu Wenbing123,Liu Hao1,Yang Xiaoyan1,Jiang Guosheng1,El Naggar M. Hesham13,Mei Guoxiong12,Liang Rongzhu12

Affiliation:

1. Engineering Research Centre of Rock-Soil Drilling and Excavation and Protection, Ministry of Education, Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China.

2. Guangxi Key Laboratory of Disaster Prevention and Structural Safety, College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, People’s Republic of China.

3. Geotechnical Research Centre, Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada.

Abstract

The apparent phase velocity of open-ended pipe piles after installation is difficult to predict owing to the soil-plug effect. This paper derives an analytical solution to calculate the apparent phase velocity of a pipe pile segment with soil-plug filling inside (APVPSP) based on the additional mass model. The rationality and accuracy of the developed solution are confirmed through comparison with the solution derived using the soil-plug Winkler model and experimental results. A parameter combination of the additional mass model that can be applied to concrete pipe piles used most commonly is recommended. The attenuation mechanism of the soil plug on the APVPSP is clarified. The findings from this study demonstrate that the APVPSP decreases with the mass per unit length of the pile, but has nothing to do with the material longitudinal wave velocity of the pipe pile. The APVPSP decreases significantly as the impulse width increases; however, for pipe piles without soil-plug filling inside, the impulse width has negligible influence on the apparent phase velocity.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3