Field and theoretical analysis of response of axially loaded grouted drilled shafts in extra-thick fine sand

Author:

Wan Zhi-hui11,Dai Guo-liang11,Gong Wei-ming11

Affiliation:

1. Key Laboratory for RC and PRC Structure of the Ministry of Education, School of Civil Engineering, Southeast University, Nanjing 211189, China.

Abstract

Research on post-grouted drilled shafts has focused primarily on post-grouted tips. Here, four full-scale shaft load tests were conducted to investigate the behaviors and performance of combined tip-and-side grouted superlong and large-diameter drilled shafts in extra-thick fine sand layers. The enhanced mechanism of the combined grouted drilled shafts is analyzed, and a rational approach for analyzing their load–displacement response is presented. The side and base resistance of the combined grouted drilled shafts exhibited significant strengthening, substantially increasing the bearing capacity and effectively controlling settlement. Under the ultimate load, >60% of the shaft head displacement was caused by shaft compression; a relatively small load proportion was carried by the shaft base. The superlong and large-diameter drilled shaft can be treated as a friction shaft, and the combined tip-and-side grouting cannot change the bearing characteristics. The hyperbolic model describes the relationship between the side resistance and relative shaft–soil displacement and captures the base resistance–displacement response. The proposed approach is verified with a case history, and the bearing behaviors of a large-diameter drilled shaft under an extra-thick fine sand layer are analyzed. These results clarify the bearing characteristics of combined grouted shafts and can help guide the design of post-grouted shafts.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference36 articles.

1. Static Testing of Pile-Base Post-Grouting Piles of the Suramadu Bridge

2. Duan, X., and Kulhawy, F.H. 2009. Tip post-grouting of slurry-drilled shafts in soil: Chinese experiences. In Proceedings of Contemporary Topics in Deep Foundations. ASCE. pp. 47–54. 10.1061/41021(335)6.

3. Model of Compaction Grouting

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3