Evaluating stability of anisotropically deposited soil slopes

Author:

Zhu H.1,Zhang L.M.1,Xiao T.2

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 8 Donghu South Road, Wuhan 430072, P. R. China.

Abstract

Natural soils often exhibit an anisotropic fabric pattern as a result of soil deposition, weathering or filling. This study aims to investigate the effects of spatially variable anisotropic soil fabric in a slope on its safety factor and failure mechanisms, and to identify the critical fabric orientation that is most unfavorable to the slope stability. The strength properties of colluvium (i.e., cohesion and friction angle) are modeled as random fields under two conditions (i.e., independent and negatively correlated). The study reveals that there exists a critical fabric orientation at 30° at which the mean factor of safety is the lowest and the probability of failure is the highest. The negative cross-correlation between soil shear strength properties leads to a significantly lower probability of failure, compared to the independent case. The highest proportion of deep failure mechanism is also identified at the same fabric orientation of 30°. The identified critical fabric orientation is gentler than the slope inclination. This study suggests that the conventional understanding that stratification parallel to the slope surface appears to be the most unfavorable condition leading to the lowest safety level does not hold for spatially varying soils.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3