Influence of stress path on stress memory and stress fracturing in brittle rocks

Author:

Bahrani Navid1,Valley Benoît2,Kaiser Peter K.3

Affiliation:

1. Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada.

2. Centre for Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland.

3. Bharti School of Engineering, Laurentian University, Sudbury, ON, Canada.

Abstract

A two-dimensional numerical model based on the distinct element method, previously calibrated to the laboratory properties of undamaged and damaged Lac du Bonnet (LdB) granite, was used to investigate the influence of stress path on the development of stress memory and stress fracturing in brittle rocks. Various cycles of loading and unloading, similar to those imposed during Kaiser effect tests, were first applied to undamaged numerical specimens of LdB granite. The results of Kaiser effect test simulations were found to be consistent with those of published laboratory and numerical investigations. Further simulations were conducted to investigate the influence of stress path resulting from the excavation of a tunnel on the depth of stress fracturing around the excavation boundary. For this purpose, the stress paths at points on and near the tunnel wall, obtained from a continuum finite element model, were applied to the calibrated numerical specimen. It was found that the amount of damage in the numerical specimens decreases rapidly with increasing distance from the excavation wall. The findings of this research shed some light on the influence of stress path and grain-scale heterogeneity on stress memory in brittle rocks and stress fracturing around underground openings.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3