Differential effects of c-Ras upon transformation, adipocytic differentiation, and apoptosis mediated by the simian virus 40 large tumor antigen

Author:

Cao Jun1,Arulanandam Rozanne1,Vultur Adina1,Anagnostopoulou Aikaterini1,Raptis Leda1

Affiliation:

1. Departments of Microbiology and Immunology and Pathology, and Cancer Research Center, Queen’s University, Kingston, Ont., Canada.

Abstract

To investigate the functional relationship between the ability of the simian virus 40 large tumor antigen (TAg) to transform and its ability to block adipocytic differentiation and induce apoptosis, we expressed TAg in C3H10T1/2 (10T1/2)-derived preadipocytes. The results demonstrated that differentiation could be suppressed at lower TAg levels than at the levels required for full neoplastic conversion. Progressively higher TAg levels were accompanied by apoptosis induction in this system. To further examine the role of the cellular Ras protooncogene product (Ras) in TAg function, TAg was expressed in 10T1/2-derived preadipocytes rendered deficient in Ras activity by transfection with inducible or constitutive antisense ras gene constructs. The results indicated that Ras is required for TAg-mediated transformation and for suppression of adipocytic differentiation, while TAg-mediated apoptosis following serum starvation was independent from Ras action. Unexpectedly, our results further demonstrated a dramatic reduction in the levels of the TAg protein itself as differentiation progressed in Ras-knockdown cells, with a concomitant reduction in TAg’s ability to induce apoptosis as a result. These findings suggest that Ras, although cytoplasmic, is an integral component of the pathway whereby TAg, an oncoprotein believed to have primarily nuclear targets, suppresses differentiation or induces neoplastic conversion of murine preadipocytes.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3