Examining 40-year stand development following vegetation control: white spruce planted in a trembling aspen dominated cutover

Author:

Fleming Robert L.1,Smith Allister D.2

Affiliation:

1. Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen St. E, Sault Ste. Marie, ON P6A 2E5, Canada.

2. Korah Collegiate and Vocational School, 636 Goulais Ave, Sault Ste. Marie, ON P6C 5A7, Canada.

Abstract

Many of the major questions regarding stand establishment practices involve implications for longer-term ecosystem development. We examined 41-year treatment effects on stand composition and dynamics using a white spruce ( Picea glauca (Moench) Voss) planting, mechanical site preparation (MSP) – herbicide (2,4-D plus 2,4,5-T) trial in a trembling aspen ( Populus tremuloides Michx.) dominated mixedwood. Both barrel and blade MSP with planting increased total and white spruce year 41 stand-level biomass over that in untreated areas. Year 2 herbicide application reduced year 41 trembling aspen biomass without substantially increasing that of white spruce, resulting in total yields similar to those in untreated areas. Barrel MSP increased year 41 trembling aspen biomass over that of untreated areas whereas blade MSP reduced it. Herbicide-related declines in trembling aspen biomass persisted or increased with time whereas white spruce response to herbicide varied with time and MSP. By accounting for inherent growth patterns, age shift calculations gave more balanced temporal depictions of planted white spruce response than effect size or percentage gain calculations. With barrel MSP, stand composition demonstrated a degree of mixedwood homeostasis whereas with blading, trembling aspen composition declined unilaterally from year 20 to 41.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3