Genetically-optimized origin-destination estimation (GOODE) model: application to regional commodity movements in Ontario

Author:

Al-Battaineh Omar,Kaysi Isam A

Abstract

The problem of origin-destination (O-D) matrix estimation has attracted significant research attention in the past few decades. This paper proposes a novel approach to estimate a regional freight O-D matrix using different data sources. The genetically optimized origin-destination estimation (GOODE) model takes advantage of the genetic algorithm's (GA) global search procedure to find the O-D matrix that is associated with the minimum deviation between estimated and observed data values. The GOODE-commodity model, an extension of the GOODE model, estimates the freight O-D matrix by interfacing GOODE with a trip generation model based on input-output data. The GOODE model and its extension bring together national input-output data, truck survey data, a global searching method, and a GIS platform for data manipulation. This paper presents the GOODE model structure, a prototypical numerical example, a benchmarking exercise with an existing O-D estimation model, and a real-world application of the GOODE-commodity model for a case study of commodity movements in Ontario. Avenues for future research are also addressed.Key words: origin-destination (O-D) matrix estimation, truck transportation modelling, input-output, Ontario, genetic algorithm.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiclass Probit-Based Origin–Destination Estimation Using Multiple Data Types;Journal of Transportation Engineering, Part A: Systems;2018-06

2. Sensitivity analysis;Traffic Simulation and Data;2014-09-17

3. Sectional mapping of local roads in Spain;Canadian Journal of Civil Engineering;2008-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3