An ab initio and AIM study on the decomposition of phosphite ozonides

Author:

Langeland Jeff L,Werstiuk Nick H

Abstract

DFT calculations at the Becke3PW91/6–31+G(d) level of theory provided optimized geometries, transition states, and wave functions suitable for the study of the reactivity and molecular structure with Atoms-in-molecules (AIM) of phosphite ozonide complexes. These calculations also provided activation energies for the extrusion of singlet oxygen from the ozonides, which occurs in a concerted manner. The molecular species investigated were trimethyl phosphite ozonide (1), triphenyl phosphite ozonide (2), trifluoromethyl phosphite ozonide (3), trifluoroethyl phosphite ozonide (4), 4-ethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane ozonide (5), 1-phospha-2,6,7-trioxabicyclo[2.2.2]octane ozonide (6), 1-phospha-2,8,9-trioxadamantane ozonide (7), and propylene phenyl phosphite ozonide (8). Single-point calculations at the Becke3PW91/6–311++G(d,p) level on the geometries obtained from the lower level theory yielded activation energies of 15.1 and 16.4 kcal mol–1 for the nonconstrained complexes 1 and 2, respectively. These values differed from the electronegative trifluoro derivatives 3 and 4, which had much higher barriers of 23.5 and 20.8 kcal mol–1, respectively. The activation energies of the bicyclic complexes 5–7 were significantly higher than 1 and 2 and comparable to 3 and 4, ranging from 23 to 26 kcal mol–1. An intermediate barrier of 20.5 kcal mol–1 was computed for 8. AIMPAC studies showed no direct correlation between the AIM atomic charges on the phosphorus or oxygen atoms of the ozonide ring with the ease of decomposition of 1–8 to singlet oxygen and the corresponding phosphate.Key words: phosphite ozonide complexes, decomposition, DFT methods, AIM, activation energy.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3