Author:
Dix George R,Coniglio Mario,Riva John FV,Achab Aïcha
Abstract
Current paleogeographic reconstructions extend Late Ordovician Taconic-derived siliciclastics across the central Canadian craton prior to the terminal Ordovician glacioeustatic lowstand. Revision of the Late Ordovician Dawson Point Formation of the Timiskaming outlier greatly reduces the distribution of these siliciclastics, and documents a greater spread of shallow-water carbonate of Richmondian age. As revised, the Dawson Point Formation contains two informal members: a deep-water graptolitic shale that grades upward into shallow-water siliciclastic redbeds, and an upper member of shallow-water, muddy, crinoidal limestone with interbedded shale, likely representing low-energy shoals on a muddy shelf. Deep-water shale accumulation began in the upper manitoulinensis graptolite Zone following foundering of the regional foreland carbonate platform. Basin development documents a northward-younging (~1 million years) from southern Ontario foreland basins, in keeping with regional tectonic-driven transgression along eastern North America. The shale-to-carbonate succession of the Dawson Point Formation correlates with the Georgian Bay Formation on Manitoulin Island, wherein the upper carbonate-dominated divisions of both formations are equivalent to the siliciclastic Queenston Formation of southern Ontario. In absence of additional biostratigraphic information, the upper member of the Dawson Point Formation is likely Richmondian (or late Ashgillian) in age. The revised Late Ordovician history of the Timiskaming outlier may identify a once significant volume of shallow-water carbonate across the central Canadian craton, with related sequestration of carbon dioxide possibly aiding global cooling. Erosion of the carbonate, driven by developing glacioeustatic lowstand conditions, was likely contemporaneous with early Hirnantian peritidal deposition of the uppermost Queenston Formation in southern Ontario.
Publisher
Canadian Science Publishing
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献