Activities of both ribonucleotide reductase subunits, M1 and M2, decrease upon serum starvation of baby hamster kidney 21/C13 cells

Author:

Cohen Eric A.,Filion Mario,Suh Martha,Langelier Yves

Abstract

Ribonucleotide reductase from mammalian cells is composed of two nonidentical subunits M1 and M2 which are both required to form the catalytic site. The level of ribonucleotide reductase activity is cell cycle controlled and several reports suggest that this control is achieved mainly by the regulation of M2 subunit synthesis. In the present study, we have found that the activities of both subunits decreased markedly upon serum starvation in the Syrian baby hamster kidney 21/C13 cell line. These decreases did not seem to be correlated with the appearance of an inhibitory factor in serum-starved cells. Quantification of the amount of the M1 subunit protein (89 000 molecular weight) by [12P]dTTP photoaffinity labelling revealed that the decrease in M1 activity was not due to variation in M1 protein level. Therefore, a posttranslational mechanism probably exists which inactivates M1 subunit when cells stay in the quiescent (G0) state and this mechanism could play an important role in the control of ribonucleotide reductase activity.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3