Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium

Author:

Pillay V. K.,Nowak J.

Abstract

The effects of inoculum density (0, 4.6 × 107, 4.2 × 108, and 8.8 × 108 cfu∙mL−1), temperature (10, 20, and 30 °C), and plant genotype (cultivars Celebrity, Blazer, Scotia, and Mountain Delight) on bacterial colonization and plant growth promotion were investigated in a gnotobiotic system. An in vitro dual culture of tomato (Lycopersicon esculentum L.) plantlets and a Pseudomonas sp., strain PsJN, were used. Epiphytic (external) and endophytic (internal) bacterial populations were determined to evaluate plantlet colonization. Shoot and root biomass of bacterized plantlets was significantly higher (p ≤ 0.05) than that of nonbacterized controls. Growth promotion was best with inoculum densities of 3 × 108 – 7 × 108 cfu∙mL−1 at 20 °C, particularly in the early maturing cultivars Blazer and Scotia. Lower inoculum densities were required to maximize root growth (approximately 1 × 108 cfu∙mL−1) than shoot growth (approximately 3 × 108 cfu∙mL−1). Shoot surface populations did not vary with inoculum density or temperature, but the bacterium colonized the shoot exterior of cultivars Celebrity, Mountain Delight, and Scotia better than cultivar Blazer. The root surface populations increased linearly with increasing inoculum density (within a range of 107–108 cfu∙mL−1), decreased with increasing temperatures (from 10 to 30 °C), and were higher for the main season cultivar Celebrity than for cultivars Blazer, Scotia, and Mountain Delight. Populations of shoot endophytes did not vary with initial inoculum density or genotype but were affected by temperature; the highest colonization was at 10 °C. The number of root endophytes was also highest at 10 °C at the inoculum density of approximately 4 × 108 cfu∙mL−1 and did not vary with genotypes. The experiments clearly indicate that there was no relationship between root surface colonization and plant growth promotion. However, the range of inoculum levels (3 × 108 – 7 × 108 cfu∙mL−1) that promoted colonization of the inner root tissues (endophytic) also best promoted plant growth. A possible biostimulation threshold within the tissues of the inoculated plants under conditions favourable to the growth of tomato is proposed.Key words: Pseudomonas sp., tomato, colonization, growth promotion.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3