Fire severity as a determinant factor of the decomposition rate of fire-killed black spruce in the northern boreal forest

Author:

Boulanger Yan12,Sirois Luc12,Hébert Christian12

Affiliation:

1. Centre d’Études Nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.

2. Ressources naturelles Canada, Service canadien des forêts, Centre de foresterie des Laurentides, 1055, rue du P.E.P.S, Case postale 103800, QC G1V 4C7, Canada.

Abstract

Several attributes might influence the decomposition process of fire-killed trees. Here, we tested various tree- and plot-level variables on the decomposition rate of fire-killed black spruce ( Picea mariana (Mill.) BSP) in the northern boreal forest. Data were collected from 474 individuals burned 17 years prior to sampling. Mean decomposition rate was relatively slow (k = 0.013) and was lowest for severely burned snags (k = 0.001) and highest for lightly burned logs (k = 0.027–0.036). Vertical position and fire severity were the most important variables influencing the decomposition rates, while plot-level variables were marginally significant. Both predictors strongly influenced the moisture content of fire-killed trees. Logs with greater contact with the ground and lightly burned trees had higher moisture content and faster decomposition rates. Very severely burned trees had lower moisture content because of faster bark shedding. This hampered the decomposition process by slowing the snag falling rate. Higher decomposition rates in lightly burned trees may result from greater colonization by early xylophagous species. By having a considerable impact on the decomposition of woody debris, fire severity may strongly influence many post-fire biological processes related to the woody necromass as well as carbon emission from burned stands.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3