Author:
Otieno Tom,Thompson Robert C.
Abstract
Several nickel(II) complexes containing pyridine (py), pyrazine (pyz) or methylpyrazine (mepyz) have been synthesized and characterized by vibrational and electronic spectroscopy, differential scanning calorimetry, and magnetic susceptibility studies to cryogenic temperatures. A comparison of the magnetic properties of the polymeric diazine-bridged complexes, Ni(pyz)2X2 (X = Cl or NO3), Ni(pyz)(p-CH3C6H4SO3)2, Ni(mepyz)(NO3)2, and Ni(pyz)3(CH3SO3)2•CH3OH with those of the related monometallic systems, Ni(py)4X2 (X = Cl, p-CH3C6H4SO3 or CH3SO3) and Ni(mepyz)4(NO3)2•H2O provides evidence for weak antiferromagnetic coupling between metal centers mediated by bridging diazine ligands in the former group of compounds. The magnetic properties were analyzed employing a model for S = 1 which takes into account zero-field splitting and employs a molecular field term to account for weak magnetic exchange. The compounds Ni(pyz)Cl2 and Ni(py)Cl2 show metamagnetic behaviour with critical fields of 13 and 2 kOe, respectively, at 2 K. In these compounds nickel ions, linked in chains by bridging chlorides, exhibit intrachain ferromagnetic and interchain antiferromagnetic exchange. In Ni(pyz)Cl2 bridging pyrazine ligands are considered to provide the pathway for the antiferromagnetic coupling resulting in a high critical field. Keywords: nickel(II), pyrazine, pyridine, complexes, metamagnetism, antiferromagnetism.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献