Author:
Vitrac H,Courrègelongue M,Couturier M,Collin F,Thérond P,Rémita S,Peretti P,Jore D,Gardès-Albert M
Abstract
The present study was aimed at determining the peroxidation of model membranes constituted of liposomes of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC) submitted to hydroxyl free radicals (generated by γ-radiolysis) attack. Liposomes of PLPC were prepared using the sonication technique, and dynamic light-scattering (DLS) measurements allowed characterization of the liposomal dispersions. Irradiation damages in sonication-generated liposomes were assessed by monitoring several oxidation products, such as conjugated dienes (by means of UV–visible spectrophotometry) and hydroperoxides (using reverse phase high-performance liquid chromatography (HPLC) associated with chemiluminescence detection). It has been shown that three different families of hydroperoxides are formed: the first one (at low radiation doses) results from HO· attack on the linoleyl chain of PLPC, giving phosphatidylcholine hydroperoxides possessing a conjugated dienic structure; the two others (at high radiation doses) are obtained by the secondary HO· attack on the primary hydroperoxide family. The quantification of these products associated with the comparison of their radiation-dose-dependent formation has provided valuable information concerning the mechanisms of their formation. Analysis by HPLC – mass spectrometry has confirmed the presence of hydroperoxides and underlined various other products, like chain-shortened fragments and oxygenated derivatives of polyunsaturated sn-2 fatty acyl chain residues. Structural assignment proposals of some oxidation products have been proposed.Key words: radiolysis, phospholipids, peroxidation, hydroperoxides, liposomes.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献