Robust Regression Approach to Analyzing Fisheries Data

Author:

Chen Y.,Jackson D. A.,Paloheimo J. E.

Abstract

Fisheries data often contain inaccuracies due to various errors, if such errors meet the Gauss–Markov conditions and the normality assumption, strong theoretical justification can be made for traditional least-squares (LS) estimates. However, these assumptions are not always met. Rather, it is more common that errors do not follow the Gauss–Markov and normality assumptions. Outliers may arise due to heterogenous variabilities. This results in a biased regression analysis. The sensitivity of the LS regression analysis to atypical values in the dependent and/or independent variables makes it difficult to identify outliers in a residual analysis. A robust regression method, least median squares (LMS), is insensitive to atypical values in the dependent and/or independent variables in a regression analysis. Thus, outliers that have significantly different variances from the rest of the data can be identified in a residual analysis. Using simulated and field data, we explore the application of LMS in the analysis of fisheries data. A two-step procedure is suggested in analyzing fisheries data.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3