Periphyton, water quality, and land use at multiple spatial scales in Alberta rivers

Author:

Carr Geneviève M,Chambers Patricia A,Morin Antoine

Abstract

The ability of land use to replace water quality variables in predictive models of periphyton chlorophyll a was tested with a 21-year data set for Alberta rivers. Nutrients (total dissolved P and NO2 + NO3) explained 23%–24% of the variability in seasonal chlorophyll a, whereas land use (human population density) explained 25%–28% of the variability. The best models included the combination of total dissolved P and population density, explaining 32%–34% of periphyton chlorophyll a variability. However, analysis of variance of chlorophyll a by ecoregions and ecozones explained about as much variability (28%–30%), and the inclusion of an ecoregion term into the regression models showed a diminished importance of land use as a predictor of chlorophyll a, with best models based on the combination of nutrients and ecoregion and explaining up to 43%–44% of periphyton chlorophyll a variability. Within ecoregions, land use was sometimes a good surrogate for nutrient data in predicting chlorophyll a concentrations. Overall, land use is a suitable surrogate for nutrients in regression models for chlorophyll a, but its inclusion in general models may reflect regional differences in nutrient–chlorophyll relationships rather than true land use effects on chlorophyll a.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3