Simulating the effects of climate change on the ice regime of the Peace River

Author:

Andrishak R.1,Hicks F.1

Affiliation:

1. Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, AB T6G 2W2, Canada.

Abstract

Winter can be a critical time on many rivers, during which ice conditions and a number of environmental factors can lead to rapidly developing and damaging flood events. Also, in northern Canada, rivers are important for both summer (ferry) and winter (ice bridge) transportation; however, during periods of variable ice conditions these transportation links are temporarily interrupted. As a result, northern communities can become isolated for periods of time. With climate warming becoming an increasing concern, it is important to know how elevated temperatures might affect river ice covers so that we can assess the implications for ice jam events, hydropower dam operation, and winter transportation. The Peace River in northern British Columbia and Alberta was used as a case study in this paper to assess the validity of a newly developed, public domain, thermo-hydraulic river ice model, River1D. The Canadian second-generation coupled global climate model (CGCM2) provided an offset for the historical air temperature input, and a future climate analogue for the mid-21st century ice regime was generated. The historical and future climate simulation results indicated significant potential reductions in the duration and extent of ice cover on the Peace River and a longer period over which the river will be impassible by ferry or ice bridge. Specifically, the number of days an ice bridge could be sustained at the Shaftesbury Ferry site was shown to decrease by 60% to 78%.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Reference6 articles.

1. Andres, D.D. 1993. Effects of climate change on the freezeup regime of the Peace River: phase I ice production algorithm development and calibration. Report No. SWE 93/01, Environmental Research and Engineering Department, Alberta Research Council, Edmonton, Alta.

2. Andrishak, R. 2006. Impact of climate change on the winter regime of the Peace River. M. Sc. thesis. University of Alberta, Edmonton, Alta.

3. Hydraulic flood routing with minimal channel data: Peace River, Canada

4. Characteristic Dissipative Galerkin Scheme for Open‐Channel Flow

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3