Vasopressin and fever: evidence supporting the existence of an endogenous antipyretic system in the brain

Author:

Naylor A. M.,Cooper K. E.,Veale W. L.

Abstract

Vasopressin administered into the ventral septum exerts a dose-related antipyresis. This site of action is similar in a number of species. The fever-reducing properties of vasopressin are both site and neuropeptide specific. Evidence supporting a role for endogenous vasopressin in fever suppression is the demonstration that the release of the peptide from the ventral septal area is altered during fever: the amount released correlates negatively with febrile changes in body temperature. In addition, changes in the concentration of vasopressin in the septum and amygdala have been demonstrated immunocytochemically during fever: an activation of vasopressinergic neurons occurs which is similar to that observed in pregnant animals at term when fever is absent. Specific antibodies directed against vasopressin or specific vasopressin antagonist analogues (e.g., d(CH2)5Tyr(Me)AVP) enhanced the febrile response to a pyrogen challenge when injected into the ventral septum. The same antagonist also can antagonize the antipyretic effect of exogenously administered vasopressin. The use of relatively specific antagonists and agonists of vasopressin, directed against the V1 and V2 subtypes of the peripheral vasopressin receptor, suggests that the central receptor responsible for the antipyretic effect of vasopressin may resemble the V1 subtype. Recent experiments using electrophysiological techniques have demonstrated the existence of thermoresponsive units in the ventral septal area whose activity may be altered by vasopressin which is possibly derived from the paraventricular nucleus and bed nucleus of the stria terminalis. Electrical stimulation of one of these cell groups in the paraventricular nucleus can reduce the fever evoked by systemic administration of bacterial pyrogen in the rabbit. Collectively, these data strongly support the hypothesis that a system of endogenous antipyresis involving vasopressin exists in the brain. There also may exist another antipyretic system in the brain involving α-melanotropin. This peptide is antipyretic when injected into the dorsal septum and concentrations of α-melanotropin are altered in this area of the brain during fever. Further, passive immunoneutralization using antiserum specific to α-melanotropin results in prolonged fever. A possible connection between the two systems has not yet been investigated. However, in future studies the mechanisms and significance of such a system will be investigated further.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3