2480 Ma mafic magmatism in the northern Black Hills, South Dakota: a new link connecting the Wyoming and Superior cratons

Author:

Dahl Peter S,Hamilton Michael A,Wooden Joseph L,Foland Kenneth A,Frei Robert,McCombs James A,Holm Daniel K

Abstract

The Laramide Black Hills uplift of southwest South Dakota exposes a Precambrian crystalline core of ~2560–2600 Ma basement granitoids nonconformably overlain by two Paleoproterozoic intracratonic rift successions. In the northern Black Hills, a 1 km thick, layered sill (the Blue Draw metagabbro) that intrudes the older rift succession provides a key constraint on the timing of mafic magmatism and of older rift-basin sedimentation. Ion microprobe spot analyses of megacrysts of magmatic titanite from a horizon of dioritic pegmatite in the uppermost sill portion yield a 207Pb/206Pb upper-intercept age of 2480 ± 6 Ma (all age errors ±2σ), comparable to two-point 207Pb/206Pb errorchron ages obtained by Pb stepwise leaching of the same titanites. Nearly concordant domains in coexisting magmatic zircon yield apparent spot ages ranging from 2458 ± 16 to 2284 ± 20 Ma (i.e., differentially reset along U–Pb concordia), and hornblende from an associated metadiorite yields a partially reset date with oldest apparent-age increments ranging between 2076 ± 16 and 2010 ± 8 Ma. We interpret these data as indicating that an episode of gabbroic magmatism occurred at 2480 Ma, in response to earlier rifting of the eastern edge of the Wyoming craton. Layered mafic intrusions of similar thickness and identical age occur along a rifted belt in the southern Superior craton (Sudbury region, Ontario). Moreover, these mafic intrusions are spatially aligned using previous supercontinent restorations of the Wyoming and Superior cratons (Kenorland–Superia configurations). This new "piercing point" augments one previously inferred by spatial–temporal correlation of the Paleoproterozoic Huronian (southern Ontario) and Snowy Pass (southeastern Wyoming) supergroups. We propose that layered mafic intrusions extending from Nemo, South Dakota, to Sudbury, Ontario, delineate an axial rift zone along which Wyoming began to separate from Superior during initial fragmentation of the Neoarchean supercontinent at ≥2480 Ma.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3