A systematic review on the behavioural responses of wild marine mammals to noise: the disparity between science and policy

Author:

Gomez C.1,Lawson J.W.1,Wright A.J.2,Buren A.D.1,Tollit D.3,Lesage V.4

Affiliation:

1. Fisheries and Oceans Canada, Marine Mammal Section, Northwest Atlantic Fisheries Centre, St. John’s, NL A1C 5X1, Canada.

2. Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.

3. SMRU Consulting North America, 510-1529 West 6th Avenue, Vancouver, BC V6J 1R1, Canada.

4. Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC G5H 3Z4, Canada.

Abstract

Noise can cause marine mammals to interrupt their feeding, alter their vocalizations, or leave important habitat, among other behavioural responses. The current North American paradigm for regulating activities that may result in behavioural responses identifies received levels (RL) of sound at which individuals are predicted to display significant behavioural responses (often termed harassment). The recurrent conclusion about the need for considering context of exposure, in addition to RL, when assessing probability and severity of behavioural responses led us to conduct a systematic literature review (370 papers) and analysis (79 studies, 195 data cases). The review summarized the critical and complex role of context of exposure. The analysis emphasized that behavioural responses in cetaceans (measured via a linear severity scale) were best explained by the interaction between sound source type (continuous, sonar, or seismic/explosion) and functional hearing group (a proxy for hearing capabilities). Importantly, more severe behavioural responses were not consistently associated with higher RL and vice versa. This indicates that monitoring and regulation of acoustic effects from activities on cetacean behaviour should not exclusively rely upon generic multispecies RL thresholds. We recommend replacing the behavioural response severity score with a response/no response dichotomous approach that can represent a measure of impact in terms of habitat loss and degradation.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3