Ecotypic differences in rhythmicity of ethylene production in Stellaria longipes: the possible roles of ACC, MACC, and ACC oxidase

Author:

Emery R. J. N.,Kathiresan A.,Reid D. M.,Chinnappa C. C.

Abstract

The alpine tundra ecotype of Stellaria longipes is characterized by a dwarf phenotype, whereas the prairie ecotype can be semidwarf or highly elongated depending on its environment. Related to their ability to elongate, these ecotypes also show divergent abilities to produce and respond to ethylene. The prairie ecotype produces a strong daily rhythm of ethylene, which is maintained even following stress events such as wind. The alpine ecotype exhibits a much less pronounced rhythm but greatly increases ethylene production in response to stress. We investigated what differences in ethylene synthesis might be responsible for the ability of the prairie ecotype to produce a large and regular daily rhythm of ethylene production, which in the alpine ecotype is weaker or sometimes absent. Levels of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylate (ACC), and its major conjugate, malonyl ACC (MACC) showed no rhythm across the course of a day. Moreover ACC levels remained stable during an entire growth cycle (21 days) in the prairie ecotype, even though ethylene is known to increase especially during periods of rapid elongation. By contrast, assays of ACC oxidase performed in vivo and in vitro showed rhythms of activity similar to those of ethylene production observed in the prairie ecotype. However, the levels of ethylene produced in the ACC oxidase assays were considerably higher than levels of ethylene normally produced by unstressed plants, and the rhythm of ACC oxidase activity was observed in both ecotypes, despite the fact that alpine Stellaria longipes exhibits a less pronounced ethylene rhythm. Thus, we concluded that although ACC oxidase activity may partially account for rhythmic production of ethylene in prairie ecotypes, other controlling factors such as spatial separation of ACC from ACC oxidase should be investigated. Key words: ACC oxidase, ecotypes, ethylene, phenotypic plasticity, rhythmicity, Stellaria longipes.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3