Senescence is coupled to induction of an oxidative phosphorylation stress response by mitochondrial DNA mutations inNeurospora

Author:

Bertrand Helmut

Abstract

In Neurospora and other genera of filamentous fungi, the occurrence of a mutation affecting one or several genes on the chromosome of a single mitochondrion can trigger the gradual displacement of wild-type mitochondrial DNA by mutant molecules in asexually propagated cultures. As this displacement progresses, the cultures senesce gradually and die if the mitochondrial mutation is lethal, or develop respiratory deficiencies if the mutation is nonlethal. Mitochondrial mutations that elicit the displacement of wild-type mitochondrial DNAs are said to be "suppressive." In the strictly aerobic fungi, suppressiveness appears to be associated exclusively with mutations that diminish cytochrome-mediated mitochondrial redox functions and, thus, curtail oxidative phosphorylation. In Neurospora, suppressiveness is connected to a regulatory system through which cells respond to chemical or genetic insults to the mitochondrial electron-transport system by increasing the number of mitochondria approximately threefold. Mutant alleles of two nuclear genes, osr-1 and osr-2, affect this stress response and abrogate the suppressiveness of mitochondrial mutations. Therefore, we propose that mitochondrial mutations are suppressive because their phenotypic effect is limited to the organelles within which the mutant DNA is located. Consequently, mitochondria that are "homozygous" for a mutant allele are functionally crippled and are induced to proliferate more rapidly than the normal mitochondria with which they coexist in a common protoplasm. While this model provides a plausible explanation for the suppressiveness of mitochondrial mutations in the strictly aerobic fungi, it may not account for the biased transmission of mutant mitochondrial DNAs in the facultatively anaerobic yeasts. Key words: mitochondria, mitochondrial DNA, mutations, suppressiveness, oxidative phosphorylation, stress response.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3