Relationship between tissue levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions

Author:

Hoffman Dennis R.,Cornatzer William E.,Duerre John A.

Abstract

The concentrations of S-adenosylmethionine (AdoMet), S-adenosylhomocysteine (AdoHcy), and various methyltransferases were determined in the cerebrum, cerebellum, and liver of rats during development and aging. The liver contained from 3 to 7 and from 10 to 15 nmol AdoHcy per gram in young and adult rats, respectively. The AdoMet concentration was 60 to 90 nmol/g liver from rats of the same age and sex. It did not vary significantly with age. In the brain the AdoMet concentration was 45 to 50 nmol/g at birth and decreased to 20 nmol/g tissue with maturity of the organ. The level of AdoHcy in this organ was less than 1 nmol/g tissue throughout the life-span of the rat. Since the ratio of AdoMet to AdoHcy is relatively high, the rate of methylation of histones, DNA, or phosphatidylethanolamine in the liver or brain was not significantly influenced by AdoHcy. Under normal nutritional conditions, the tissue concentration of AdoMet is far above the Km values of histone and phosphatidylethanolamine methyltransferases. The levels of activity of these enzymes in liver and brain did not correlate with the cellular concentration of AdoHcy. The histone methyltransferase activity was elevated in rapidly proliferating tissues and declined markedly in the absence of histone biosynthesis. Phosphatidylethanolamine methyltransferase activity was elevated during development of the liver. The specific activity of the AdoHcy hydrolase remained relatively constant in the rat brain and liver. The activity of this enzyme was 10 times higher in liver than in brain, yet the concentration of AdoHcy was much lower in the latter organ. The tissue levels of this compound are evidently dependent on the rates of removal of homocysteine and adenosine. Adenosine deaminase was present in the liver and brain at relatively high concentrations, particularly during development.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3