Frost heave characteristics of undisturbed sensitive Champlain Sea clay

Author:

Konrad J.-M.,Seto J.T.C.

Abstract

Undisturbed Champlain Sea clay samples were subjected to laboratory freezing tests with pore-pressure measurements in order to determine the freezing characteristics of a structured compressible soil. Step-freezing and ramped-freezing tests with applied back pressure were conducted on 10 cm high samples in open-system conditions. Significant pore-pressure reductions in the unfrozen soil induce important frost-induced consolidation and destructuration of the clay. It was found that the freezing characteristics of Saint-Alban clay are best defined by the segregation potential at the active ice lens, SP, which includes water fluxes generated within the frozen fringe and within the unfrozen soil as excess water is expelled during consolidation, and finally water from an external source. For the Saint-Alban clay, SP values of the intact clay ranged between 450 and 600 × 10−5 mm2/(s °C), whereas those of destructured clay at a lower void ratio were significantly smaller. Back-calculating the segregation potential solely from surface heave measurements in laboratory tests may underestimate considerably the frost susceptibility of compressible structured clays. Segregation potential inferred from instrumented field sites was 430 × 10−5 mm2/(s °C) and is consistent with the laboratory tests results. Key words : freezing, frost heave, structured clay, undisturbed, consolidation.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3