Improvement in cardiac dysfunction in streptozotocin-induced diabetic rats following chronic oral administration of bis(maltolato)oxovanadium(IV)

Author:

Yuen Violet G.,Orvig Chris,Thompson Katherine H.,McNeill John H.

Abstract

Decreased cardiac function in streptozotocin-diabetic rats has been used as a model of diabetes-induced cardiomyopathy, which is a secondary complication in diabetic patients. The present study was designed to evaluate the therapeutic effect of a new organic vanadium complex, bis(maltolato)oxovanadium(IV), (BMOV), in improving heart function in streptozotocin-diabetic rats. There were four groups of male, Wistar rats: control (C), control treated (CT), diabetic (D), and diabetic treated (DT). Treatment consisted of BMOV, 0.5 mg/mL (1.8 mM) for the first 3 weeks and 0.75 mg/mL (2.4 mM) for the next 22 weeks, in the drinking water of rats allowed ad libitum access to food and water. BMOV lowered blood glucose to < 9 mM in 70% of DT animals without any increase in plasma insulin levels, and mean blood glucose and plasma lipid levels were significantly lower in DT vs. D rats. Tissue vanadium levels were measured in plasma, bone, kidney, liver, muscle, and fat of BMOV-treated rats. Plasma vanadium levels averaged 0.84 ± 0.07 μg/mL (16.8 μM) in CT rats and 0.76 ± 0.05 μg/mL (15.2 μM) in DT animals. The highest vanadium levels at termination of this chronic feeding study were in bone, 18.3 ± 3.0 μg/g (0.37 μmol/g) in CT and 26.4 ± 2.6 μg/g (0.53 μmol/g) in DT rats, with intermediate levels in kidney and liver, and low, but detectable levels in muscle and fat. There were no deaths in either the CT or DT group, and no overt signs of vanadium toxicity were present. Tissue vanadium levels were not correlated with the glucose-lowering effect. Isolated working heart parameters of left ventricular developed pressure (LVDP) and rate of pressure development (+dP/dT, and −dP/dT) indicated that BMOV treatment resulted in significant correction of the heart dysfunction associated with streptozotocin-induced diabetes in rat.Key words: bis(maltolato)oxovanadium(IV), vanadium, diabetes, streptozotocin, myocardial dysfunction.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3