Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approachThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process.

Author:

Lee Brian L.1,Sykes Brian D.1,Fliegel Larry1

Affiliation:

1. Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada.

Abstract

The sodium/proton exchanger isoform 1 (NHE1) is an ubiquitous plasma membrane protein that regulates intracellular pH by removing excess intracellular acid. NHE1 is important in heart disease and cancer, making it an attractive therapeutic target. Although much is known about the function of NHE1, current structural knowledge of NHE1 is limited to two conflicting topology models: a low-resolution molecular envelope from electron microscopy, and comparison with a crystal structure of a bacterial homologue, NhaA. Our laboratory has used high-resolution nuclear magnetic resonance (NMR) spectroscopy to investigate the structures of individual transmembrane helices of NHE1 — a divide and conquer approach to the study of this membrane protein. In this review, we discuss the structural and functional insights obtained from this approach in combination with functional data obtained from mutagenesis experiments on the protein. We also compare the known structure of NHE1 transmembrane segments with the structural and functional insights obtained from a bacterial sodium/proton exchanger homologue, NhaA. The structures of regions of the NHE1 protein that have been determined have both similarities and specific differences to the crystal structure of the NhaA protein. These have allowed insights into both the topology and the function of the NHE1 protein.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3