THE PRINCIPLE OF EQUIVALENCE CHANGE IN OXIDATION–REDUCTION REACTIONS

Author:

Halpern J.

Abstract

The principle of equivalence change predicts that oxidation–reduction reactions between 1-equivalent oxidants and 2-equivalent reductants (or vice versa) will, in general, be slow, since they must proceed either through termolecular paths or through the formation of unstable intermediates. In this paper, the kinetics and mechanisms of a number of reactions of this type are examined and an attempt is made to assess the validity of the considerations on which this principle is based. Among the reactions considered are (1) electron transfer between metal ions; (2) oxidation of metal ions by oxygen; and (3) reduction of metal ions by hydrogen. In each of these cases it is found that the principle of equivalence change has only limited validity and that a number of other factors are important in determining the relative rates and mechanisms of reactions of different equivalence type. Among these are the formation of stabilized intermediate complexes between oxidant and reductant and the possibility of unstable intermediates acting as carriers in chain reactions. In reactions of thallium(I) or thallium(III) with 1-equivalent metal ions, thallium(II) is formed as an intermediate. Some of these reactions are not as slow as expected, apparently because of favorable entropies of activation. Several of the reactions examined proceed simultaneously through bimolecular and termolecular paths, the latter being favored because of lower activation energies.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+–TiO2 system by the TiO2 surface and structure modification;Applied Catalysis A: General;2009-10

2. ETC: Ein mechanistisches Konzept für Anorganische und Organische Chemie;Angewandte Chemie;2006-01-19

3. Electrocatalytic mediation of oxidation of H2 at gold by chemisorbed states of anions;Journal of Electroanalytical Chemistry and Interfacial Electrochemistry;1990-01

4. ETC: A Mechanistic Concept for Inorganic and Organic Chemistry;Angewandte Chemie International Edition in English;1982-01

5. References;Electron Transfer Reactions;1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3