Persistence of a surrogate for a genetically engineered cellulolytic microorganism and effects on aquatic community and ecosystem properties: mesocosm and stream comparisons

Author:

Bott Thomas L.,Kaplan Louis A.

Abstract

Our research objectives were to (i) determine the persistence of an introduced surrogate (Cellulomonas sp. NRC 2406) for a genetically engineered microorganism in sediments, growths of Cladophora glomerata (Chlorophyta), and leaf packs, (ii) test community and ecosystem structural and functional responses to the introduced bacteria, and (iii) evaluate the utility of flowing water mesocosms as tools for assessing the fates and effects of introduced bacteria in streams. Cellulomonas sp. densities were determined using fluorescent antibodies; maxima were ≤ 1% of the total bacterial community in each habitat in two experiments, and ≈25% of total densities in leaf packs in a third experiment. Densities declined from postinoculation maxima faster in sediments than in C. glomerata growths and leaf packs. Cellulomonas sp. persisted in leaf packs at densities significantly greater than background. Cellulomonas sp. had no statistically significant effects on primary productivity, community respiration, assimilation ratios, photosynthesis/respiration (P/R) ratios, bacterial productivity, and leaf litter decomposition rates. Cellulase concentrations were positively correlated with Cellulomonas sp. densities ≥ 7 × 108 cells/g dry mass in fresh leaf litter for 2 days following exposure. Total bacterial densities, algal biomass, and total viable biomass sometimes differed between control and experimental systems, but differences were not related to Cellulomonas sp. introduction. Mesocosms were good tools for studying bacterial population dynamics in leaf litter and physiological aspects of litter degradation, but they were less well suited to measuring losses of litter mass and cellulose because physical abrasion during storms accelerated those processes in the field.Key words: bacterial population dynamics, mesocosms, streams, introduced bacteria, Cellulomonas sp., litter decomposition.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3