Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings

Author:

Herman David C.,Fedorak Phillip M.,MacKinnon Mike D.,Costerton J. W.

Abstract

Organic acids, similar in structure to naphthenic acids, have been associated with the acute toxicity of tailings produced by the oil sands industry in northeastern Alberta, Canada. Bacterial cultures enriched from oil sands tailings were found to utilize as their sole carbon source both a commercial mixture of naphthenic acids and a mixture of organic acids extracted from oil sands tailings. Gas chromatographic analysis of both the commercial naphthenic acids and the extracted organic acids revealed an unresolved "hump" formed by the presence of many overlapping peaks. Microbial activity directed against the commercial mixture of naphthenic acids converted approximately 50% of organic carbon into CO2 and resulted in a reduction in many of the gas chromatographic peaks associated with this mixture. Acute toxicity testing utilizing the Microtox test revealed a complete absence of detectable toxicity following the biodegradation of the naphthenic acids. Microbial activity mineralized approximately 20% of the organic carbon present in the extracted organic acids mixture, although there was no indication of a reduction in any gas chromatographic peaks with biodegradation. Microbial attack on the organic acids mixture reduced acute toxicity to approximately one half of the original level. Respirometric measurements of microbial activity within microcosms containing oil sands tailings were used to provide further evidence that the indigenous microbial community could biodegrade naphthenic acids and components within the extracted organic acids mixture.Key words: naphthenic acids, biodegradation, oil sands tailings, toxicity testing.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3