Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses

Author:

Nie Xianzhou,Singh Rudra P,Tai George C.C

Abstract

In this work, we report cloning of two full-length 1-aminocyclopropane-1-carboxylate oxidase (ACO) cDNAs (ACO1 and ACO2) from potato (Solanum tuberosum) and their expression in potato tissues. The sequence data indicate that the two cDNAs share a high degree of homology with each other, and with known ACO genes from other plant species, including monocots and dicots. However, these potato genes lack homology at the 5' and 3' ends, despite similarities in their open reading frames and encoded amino acids. Phylogenetic analysis places them in two subfamilies of ACOs. The genes are tissue specific: expression is high in leaves and low in roots and tubers. In sprouts and tubers, ACO1 is induced by heat (40°C) and cold (0°C) stresses, whereas ACO2 is induced only by cold (0°C). ACO1 is markedly induced in leaves by wounding, soil-flooding, and exogenous application of 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, ACO2 induction is lower under these treatments. ACO1 and ACO2 are regulated very differently in potato leaves with respect to senescence. ACO2 expression is unaffected by senescence, whereas that of ACO1 is closely related to the age and senescence in both attached and detached leaves. Exogenous ACC not only induces ACO1, but also accelerates leaf senescence. ACO1 transcripts are induced significantly in leaves, stems, and tubers in the Potato virus A (PVA)-resistant potato cultivar Shepody when graft inoculated with PVA.Key Words: ACO, ethylene, gene isolation, phylogeny, Solanum tuberosum.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3