Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays

Author:

Lunne Tom,Berre Toralv,Andersen Knut H,Strandvik Stein,Sjursen Morten

Abstract

After many decades of research, the issue of sample disturbance is still important as regards to determining reliable and representative soil parameters for foundation design in soft clays. Parallel laboratory tests have been carried out on high-quality block samples and ordinary piston tube samples from 12 deposits of soft Norwegian marine clays. Undrained triaxial and direct simple shear (DSS) tests on samples reconsolidated to the in situ effective stresses show that sample disturbance has a significant effect on the measured stress–strain–strength behaviour: the more disturbed the sample, the lower the shear stress at small strains and the higher the shear stress at large strains. Breakdown of the clay structure, including cementation bonds, is the assumed cause of lower shear resistance at small strains, whereas at large strains the shear resistance is governed mainly by the water content, which for soft clay samples, reconsolidated to the in situ effective stresses, will be lower, and the strength thereby higher, the more disturbed the sample. The work described herein also includes the effects of the consolidation procedure; in addition to the reconsolidation technique, both stress history and normalized soil engineering properties (SHANSEP) and delayed consolidation tests have been carried out.Key words: soft clays, sample disturbance, consolidation procedures, stress–strain–strength behaviour, stress–strain–time behaviour.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 207 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3