Probabilistic assessment of induced seismicity at the Alberta No. 1 geothermal project site

Author:

Yaghoubi Ali1ORCID,Hickson Catherine J.2,Leonenko Yuri13,Dusseault Maurice B.1

Affiliation:

1. Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. Alberta No. 1, Edmonton, AB T5J 3M1, Canada

3. Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

Alberta No. 1 (ABNo1) is a geothermal project targeting deep carbonate, conglomerates, and sandstone formations in a potential production and injection zone for geothermal energy exploitation within the Municipal District of Greenview south of Grande Prairie, Alberta, Canada. In geothermal systems without a steam fraction (typically systems under 170 °C), rapid widespread pore pressure changes and slow temperature changes have led to increased deviatoric stresses, resulting in induced seismicity. A concern for the ABNo1 Geothermal Project is that anthropogenic seismicity from oil, gas, and well field fluid injection has created felt events in Alberta. Thus, at the beginning of this type of project, it is prudent to review the potential for induced seismicity. In this study, a geomechanical study of the Leduc and Granite Wash Formations, two potential geothermal fluid exploitation zones, has been undertaken based on borehole geophysics and regional injection-induced earthquake data. Determining subsurface properties such as state of stress, pore pressure, and fault properties, however, poses uncertainties in the absence of actual data from the target formations. Geomechanical analysis results (with associated uncertainties) are used to assess the potential for injection-induced earthquakes. A Monte Carlo probability analysis is employed to estimate the likelihood of slippage of the known faults close to the ABNo1 Geothermal Project. A cumulative distribution function of the critical pore pressure on each fault is derived from the local tectonic stress state and Mohr–Coulomb shear parameter analyses. The resultant probabilistic fault stability maps can serve as a baseline for future fluid injection projects in the region including wastewater disposal, hydraulic fracture stimulation, CO2 sequestration, as well as geothermal energy extraction.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3