Affiliation:
1. Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada.
2. Northwest Territories Geological Survey, Yellowknife, Northwest Territories, Canada.
Abstract
The Hare Indian Formation (HIF) is a late Eifelian to Givetian organic-rich mudstone constituting the lower portion of the Horn River Group (HRG), which has been minimally scrutinized in the literature. This paper proposes depositional environments and a sequence stratigraphic framework for the HIF. Using composition data collected via energy-dispersive X-ray fluorescence, geochemical proxies inform detrital input, silica source, and paleoredox conditions. Cross-plots and chemostratigraphic profiles of detritally sourced Al, Ti, and K and redox-sensitive Mo and V inform depositional and stratigraphic constraints. Silica proportions vary, indicating that sediment was derived from detrital and biogenic sources. Al, Ti, and K distributions increase upwards, showing increased continentally sourced minerals. Redox-sensitive metals are highest in the Bluefish Member (BM), suggesting intermittent euxinia. Based on the presence of continental and pelagic sediments, the sedimentary environment is interpreted as proximal- to mid-shelf. These proxies guide systems tract interpretations. Si and redox-sensitive metal concentrations peak higher in the BM, accompanied by lowered concentrations of Al, Ti, and K, suggesting a maximum flooding surface. At the top of the Prohibition and Bell Creek members, redox-sensitive enrichments are lower with higher concentrations of Al, Ti, and K, suggesting a maximum regressive surface. Transgression occurred during the initial deposition of the BM, followed by regression for the remainder of the HIF. The sedimentology of the HIF can be difficult to decipher; the use of chemostratigraphy supports its geological history (including sedimentation trends and a local record of relative sea level) using methods that may be applied to other fine-grained successions.
Publisher
Canadian Science Publishing
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献