Paleoenvironmental and chemostratigraphic implications of variations in geochemical proxies across the Upper Jurassic–Lower cretaceous boundary: a case study from the Flemish Pass Basin

Author:

Bingham-Koslowski N.1ORCID,Azmy K.2,Layton-Matthews D.3ORCID

Affiliation:

1. Natural Resources Canada, Geological Survey of Canada, Ottawa, ON K1A 0E8, Canada

2. Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada

3. Queen's Facility for Isotope Research, Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON K7L 3N6, Canada

Abstract

The Jurassic–Cretaceous boundary is the only Phanerozoic period-level boundary that lacks a golden spike on the geological timescale despite significant global geological and environmental change during this time related to the opening of the Atlantic Ocean. Paleoenvironmental proxy profiles (total organic carbon, δ34S, δ15N, Fe, Mn, Ce/Ce*, Th/U, δ13Corg, P, Ni, Zn, Cu, and B/Ga) for core 3 of the Baccalieu I-78 well in the Flemish Pass Basin, offshore eastern Canada, exhibit a geochemical anomaly between 3288.5 and 3289 m, overlapping with the biostratigraphic placement of the Jurassic–Cretaceous boundary. Collectively the geochemical analyses are interpreted to indicate that the anomaly is associated with a fall in relative sea level, followed by a rise, which led to restricted circulation, stratification, and widespread anoxia. This anoxia, coupled with an arid climate, further resulted in reduced weathering, limited nutrient supply, and an overall reduction in primary productivity. The results of this study, in conjunction with previous biostratigraphic studies on core 3, suggest that the Jurassic–Cretaceous boundary in Baccalieu I-78 likely falls within the geochemical anomaly, specifically between 3228.5 and 3288.85 m. Furthermore, the paleoenvironmental interpretations derived in this study agree with published reports on global sea level and climate trends around the Jurassic–Cretaceous boundary, implying the influence of global, rather than regional, factors on deposition. This suggests that geochemical proxies may be useful in providing additional paleoenvironmental insights and helping to constrain stratigraphic boundaries, particularly in intervals that lack significant lithological or biological change.

Funder

Geological Survey of Canada

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3